p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.8M4(2), (C2×D4)⋊3C8, C23⋊1(C2×C8), C4○2(C23⋊C8), C23⋊C8⋊18C2, (C23×C4).6C4, C24.44(C2×C4), (C2×C42).15C4, C4.44(C23⋊C4), (C22×D4).18C4, (C22×C4).650D4, C22.9(C22×C8), C22.1(C22⋊C8), (C23×C4).17C22, C22⋊C8.154C22, C23.90(C22⋊C4), C23.160(C22×C4), (C22×C4).423C23, C22.12(C2×M4(2)), C4○2(C22.M4(2)), C22.M4(2)⋊19C2, C2.2(M4(2).8C22), (C2×C4)⋊1(C2×C8), (C2×C4×D4).1C2, (C2×C4)○(C23⋊C8), (C2×C22⋊C8)⋊2C2, C2.7(C2×C22⋊C8), C2.3(C2×C23⋊C4), (C2×C4).1120(C2×D4), (C2×C22⋊C4).17C4, (C22×C4).40(C2×C4), (C2×C4⋊C4).733C22, C22.91(C2×C22⋊C4), (C2×C4).309(C22⋊C4), (C2×C22⋊C4).400C22, (C2×C4)○(C22.M4(2)), SmallGroup(128,191)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.8M4(2)
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, dad-1=eae=ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=bcd5 >
Subgroups: 348 in 166 conjugacy classes, 62 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C22⋊C8, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22×C8, C23×C4, C22×D4, C23⋊C8, C22.M4(2), C2×C22⋊C8, C2×C4×D4, C23.8M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C23⋊C4, C2×C22⋊C4, C22×C8, C2×M4(2), C2×C22⋊C8, C2×C23⋊C4, M4(2).8C22, C23.8M4(2)
(1 5)(2 29)(3 7)(4 31)(6 25)(8 27)(9 13)(10 21)(11 15)(12 23)(14 17)(16 19)(18 22)(20 24)(26 30)(28 32)
(2 25)(4 27)(6 29)(8 31)(9 24)(11 18)(13 20)(15 22)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 19)(2 9)(3 14)(4 18)(5 23)(6 13)(7 10)(8 22)(11 27)(12 32)(15 31)(16 28)(17 30)(20 29)(21 26)(24 25)
G:=sub<Sym(32)| (1,5)(2,29)(3,7)(4,31)(6,25)(8,27)(9,13)(10,21)(11,15)(12,23)(14,17)(16,19)(18,22)(20,24)(26,30)(28,32), (2,25)(4,27)(6,29)(8,31)(9,24)(11,18)(13,20)(15,22), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19)(2,9)(3,14)(4,18)(5,23)(6,13)(7,10)(8,22)(11,27)(12,32)(15,31)(16,28)(17,30)(20,29)(21,26)(24,25)>;
G:=Group( (1,5)(2,29)(3,7)(4,31)(6,25)(8,27)(9,13)(10,21)(11,15)(12,23)(14,17)(16,19)(18,22)(20,24)(26,30)(28,32), (2,25)(4,27)(6,29)(8,31)(9,24)(11,18)(13,20)(15,22), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19)(2,9)(3,14)(4,18)(5,23)(6,13)(7,10)(8,22)(11,27)(12,32)(15,31)(16,28)(17,30)(20,29)(21,26)(24,25) );
G=PermutationGroup([[(1,5),(2,29),(3,7),(4,31),(6,25),(8,27),(9,13),(10,21),(11,15),(12,23),(14,17),(16,19),(18,22),(20,24),(26,30),(28,32)], [(2,25),(4,27),(6,29),(8,31),(9,24),(11,18),(13,20),(15,22)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,19),(2,9),(3,14),(4,18),(5,23),(6,13),(7,10),(8,22),(11,27),(12,32),(15,31),(16,28),(17,30),(20,29),(21,26),(24,25)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8 | D4 | M4(2) | C23⋊C4 | M4(2).8C22 |
kernel | C23.8M4(2) | C23⋊C8 | C22.M4(2) | C2×C22⋊C8 | C2×C4×D4 | C2×C42 | C2×C22⋊C4 | C23×C4 | C22×D4 | C2×D4 | C22×C4 | C23 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 16 | 4 | 4 | 2 | 2 |
Matrix representation of C23.8M4(2) ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 11 | 16 | 0 |
0 | 0 | 11 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 10 | 11 | 16 | 0 |
0 | 0 | 6 | 7 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 13 | 0 | 0 | 0 | 0 |
5 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 15 |
0 | 0 | 10 | 11 | 15 | 0 |
0 | 0 | 0 | 4 | 6 | 7 |
0 | 0 | 0 | 0 | 10 | 11 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,11,0,0,0,1,11,0,0,0,0,0,16,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,10,6,0,0,0,1,11,7,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,5,0,0,0,0,13,13,0,0,0,0,0,0,6,10,0,0,0,0,7,11,4,0,0,0,0,15,6,10,0,0,15,0,7,11],[1,2,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0] >;
C23.8M4(2) in GAP, Magma, Sage, TeX
C_2^3._8M_4(2)
% in TeX
G:=Group("C2^3.8M4(2)");
// GroupNames label
G:=SmallGroup(128,191);
// by ID
G=gap.SmallGroup(128,191);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,352,1123,851,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,d*a*d^-1=e*a*e=a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^5>;
// generators/relations